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Functions are often defined by series that don’t converge
everywhere:

f (x) = 1 + x + x2 + x3 + . . . |x | < 1



Sometimes, there exists a different representation of the function
which is equal to the series where it converges:

f (x) = 1 + x + x2 + x3 + . . .

=
1

1− x
|x | < 1



The new representation gives reasonable values even outside the
domain of convergence:

f (x) =
1

1− x
=⇒ f (3) = −1

2

But

1 + 3 + 32 + 33 + . . .→∞



Both the series and the closed-form still blow up at some of the
same points:



The closed-form even works for complex numbers,

f (z) =
1

1− z
=

1

1− x − iy



So what do we really mean by equals?

Does f (x) = 1 + x + x2 + x3 + . . . or does f (x) = 1
1−x ? Clearly

they disagree sometimes.



Answer: we flip how we were thinking about it.

The “true” f (x) is the one defined over the biggest space possible.

All other representations (like series with a finite radius of
convergence) just happen to agree with f where they converge.
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Conclusion: f (z) = 1
1−z . The function f has been extended over

the complex numbers.



Analytic continuation: The extension of a function∗ to a larger
domain

∗ Function must be “analytic”∼“nice enough.”



How do we magically extend things in practice? Won’t always get
lucky with a closed-form for the series.

Answer: usually by noticing patterns!



Example: the Gamma function Γ(z) and the factorial
n! = n(n − 1)(n − 2) . . . 1. How do we define the factorial for real
numbers x that are not integers? Or for complex numbers z?

Notice the factorial is defined recursively by 0! = 1 and
n! = n(n − 1)!



Example: the Gamma function Γ(z) and the factorial
n! = n(n − 1)(n − 2) . . . 1. How do we define the factorial for real
numbers x that are not integers? Or for complex numbers z?

Notice the factorial is defined recursively by 0! = 1 and
n! = n(n − 1)!



Motivates definition of an “analytic” function Γ(z), with Γ(1) = 1
and Γ(z + 1) = zΓ(z).

When z is a positive integer, Γ(z) = (z − 1)!



How to write down a function from this? Easiest way is to be
playing with integrals and just notice that the following satisfies
the same recursion relations by integrating by parts:

Γ(z) =

∫ ∞
0

xz−1e−xdx

Lots of complex analysis machinery also works, to represent it as
an infinite product of functions.



Γ(z) is not the factorial. What is (2.5)!? What is (3 + 2i)!? But
Γ(3) = 2!. Γ(z) is the analytic continuation of the factorial.



Player 2 enters the game: the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ . . .

The sum does not converge when s ≤ 1, if s is a real number.



However, the zeta function also satisfies the following relation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

How to prove this? It’s constructed magically from infinite product
representations with the help of the gamma function.



Notice that

ζ(−1) = 2−1π−2 sin
(
−π

2

)
Γ(2)ζ(2)

=
1

2π2
(−1)(1!)

π2

6

= − 1
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The fact that ζ(2) = π2

6 is well-known and cute but tricky to
prove. The easiest way uses Fourier series, which are in most
differential equations classes.



In summary we have found that ζ(−1) = − 1
12 .

And if we plug s = −1 into the series, it looks like

1 + 2 + 3 + . . .

But 1 + 2 + 3 + . . . 6= − 1
12 ! ζ(−1) 6= 1 + 2 + 3 + . . .! It is the

analytic continuation that we evaluate at s = −1, not the series.



If we come across a problem where we run into the series
1 + 2 + 3 + . . ., but we feel like we ought to be getting a finite
answer, one thing to try is replacing the series with its analytic
continuation.

Also called zeta function regularization; one of many techniques of
resummation/regularization.

This trick works to assign finite values to other series as well, like
ζ(0) = 1 + 1 + 1 + . . . = −1

2 .



If we come across a problem where we run into the series
1 + 2 + 3 + . . ., but we feel like we ought to be getting a finite
answer, one thing to try is replacing the series with its analytic
continuation.

Also called zeta function regularization; one of many techniques of
resummation/regularization.

This trick works to assign finite values to other series as well, like
ζ(0) = 1 + 1 + 1 + . . . = −1

2 .



If we come across a problem where we run into the series
1 + 2 + 3 + . . ., but we feel like we ought to be getting a finite
answer, one thing to try is replacing the series with its analytic
continuation.

Also called zeta function regularization; one of many techniques of
resummation/regularization.

This trick works to assign finite values to other series as well, like
ζ(0) = 1 + 1 + 1 + . . . = −1

2 .



In physics: the sum 1 + 2 + 3 + . . . shows up frequently when
computing the energy of quantum fluctuations of the vacuum.

Two motivations for replacing the series with its continuation:

I Experimental observation (e.g. Casimir effect)

I Alternate methods of computation (nilpotency of BRST
charge, vanishing of conformal anomaly vs. Lorentz anomaly
fixing spacetime dimension in (super)string theory).



1 + 2 + 3 + . . . 6= − 1
12 , but the replacement is often convenient.

Questions?
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