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Topics covered: Maps; Equivalence relations and classes; Orientability; Projective spaces; Elemen-
tary group theory; Vector spaces; Tensors; Topological spaces and elementary topology; Continuity;
Compactness; Connectedness, Homeomorphism and topological invariants.

These problems remain challenging (I think reasonably so); but I have separated out a bit more
math practice since this chapter is full of fundamental material. I tried to pull more interesting
exercises rather than rote ones, although I think having easy problems is nice. I’m a little rusty on
Aharonov-Bohm, so it would be nice if somebody could sharpen up my statement on 3e) – I know
what I have in mind, but I think as is the problem just suggests at it.

1 Short Math Questions

(a) Nakahara Exercise 2.13: Suppose that the axioms of a topological space are modified so that
infinite (not just finite) intersections of open sets are open. Show that this reduces the usual
topology on R to the discrete topology.

(b) Show that adding the point at infinity {∞} to the Euclidean plane R2 is equivalent to com-
pactifying the space to the sphere S2 by explicitly constructing a homeomorphism between the
two.

(c) How many equivalence relations can be defined on a set of six elements? (Source: modifica-
tion of Problem 7.6 from Chapter 2 of Artin’s Algebra). Note that equivalence relations are
considered unique only if they define different sets of equivalence classes.

(d) Show that attaching RP 2 to a surface by pipe decreases the Euler characteristic of the surface
by one. Source: Course entitled Topological terms in condensed matter physics, Spring 2009,
Problem Set 2, http://felix.physics.sunysb.edu/ abanov/Teaching/Spring2009/phy680.html.

(e) A path from a to b in a generic space X is a continuous function f from the interval [0, 1]
into X such that f(0) = a and f(1) = b. In this problem, let G be an arbitrary subgroup of
GLn(R), the set of real, invertible n× n matrices.

(i) Prove that if a, b, c, d ∈ G, and there are paths in G from a to b and c to d, then there is
a path in G from a · c to b · d.

(ii) The set of matrices that are path-connected to the identity in G is called the connected
component of G. Prove that this set forms a normal subgroup of G.

Source: modification of Problem M.7 from Chapter 2 of Artin’s Algebra.
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2 Discrete Normal Subgroups

Source: Problem 1, Problem Set 4 from 18.755 (Introduction to Lie Groups), Fall 2014.

Recall that a group is a set closed under some associative law of composition (“multiplication”)
in which an identity and inverse element exist. A Lie group is one in which multiplication is
continuous (in fact, it is smooth). Here we also define the center of a group as set of all elements
of a group which commute with every element of the group.

Suppose N ⊂ G is a normal subgroup of a connected Lie group G, and suppose the subspace
topology on N is the discrete topology. Prove that N is contained in the center of G.

Note: you will need the fact that continuous maps preserve connectedness.

3 Background Independence: A “Topological Theta Term”

Source: Course entitled Topological terms in condensed matter physics, Spring 2009, Problem Set
1, http://felix.physics.sunysb.edu/ abanov/Teaching/Spring2009/phy680.html.

In condensed matter physics and string theory, a certain type of field theory is called a “topological
quantum field theory” if the action and resulting spectrum of states is background-independent,
meaning (in part) that it does not depend on specifying a metric in advance. This is very interesting
and well-studied in the context of quantum gravity (particularly by Witten), since it would be
useful to have an action for gravity that doesn’t rely on having a metric in advance (which results
in nonlinearity). In this problem we’ll examine the sense in which background-independence is
“topological” in a simple example. This will involve adding a term to the Lagrangian which is
a topological invariant, dependent on the fundamental group of the space (a concept that will
come up in later chapters).

Consider the classical action of a particle on a ring, with θ a constant and φ the angle on the ring:

S =

∫
dτ

(
1

2
mφ̇2 − θ

2π
φ̇

)
(3.1)

where τ is some “proper” time. Reparametrizing time as τ = f(t) we have dτ = f ′dt and dτ2 =
(f ′)2dt2; identify a “metric” via g00 = (f ′)2 and g00 = (f ′)−2. From this we have

√
g00 = f ′

(a) Rewrite the action in terms of φ(t) instead of φ(τ).

(b) Find the form of the action if it is written in terms of the introduced metric (Note: the metric
is often called an einbein when introduced as an auxiliary field like this).

(c) Using the general formula for the variation of the action with respect to a metric (g = det gµν):

δS =

∫
dx
√
g

1

2
Tµνδg

µν , (3.2)

find the stress-energy tensor for the particle on the ring and confirm that T00 gives the energy
of the particle. What is the contribution of the “topological theta term” to the stress-energy
tensor?
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(d) Suppose the particle travels around the ring once. By how much does the action increase/decrease?

(e) Secretly we’ve been looking at the quantum theory of electrons in a magnetic field! Recall from
the last problem set that the Lagrangian of an electron in a magnetic field is:

L =
1

2
mẋ2 + eẋ ·A (3.3)

Compare to the “topological” action in this problem. What does this imply about cyclic paths
of an electron around a solenoid? We will revisit such a scenario later in discussion of the
Aharonov-Bohm effect.

Thanks to Bob Knighton for the following addition to this problem:

To make the previous discussion more explicit: consider the following classical action of a charged
particle moving in an electromagnetic field with vector potential A and no electric potential (ie
φ = 0)

S =

∫
dt

(
1

2
mẋ2 − eẋ ·A

)
f) Rewrite S in the simple case of a particle confined to move on a ring of radius R.

g) Let us apply this to the specific case where the electromagnetic field is generated by a solenoid
of radius a < R passing through the axis of rotation of the particle. The vector potential in a
specific gauge is given by

A =

{
(Φr/2πa2) φ̂, r < a

(Φ/2πr) φ̂, r > a

Where Φ is the magnetic flux passing through the solenoid. Use this to identify S with the
free action of a particle on a ring plus the topological θ term given in the previous part. In
particular, give an expression for θ in terms of given physical quantities.

h) The path integral formulation of quantum mechanics tells us that the amplitude to propogate
from the point xi at time ti to the point xf at time tf is given by

〈xf , tf |xi, ti〉 =

∫
D[x(t)] exp

(
− i
~
S[x(t)]

)
Where the action is defined on paths begining and ending at our desired times and points and
where

∫
D[x(t)] defines an integration over all integrable paths between these points. Using

this, show that if an electron travels once around the solenoid, it picks up a phase factor and
identify the value of this phase.

This effect is the famous Aharanov-Bohm Effect, which shows that a particle can be influenced
by an electromagnetic field while never actually passing through it. The phase picked up as the
electron travels around the solenoid is known as a Topological Phase (because the solenoid
behaves as a topological defect altering the physics of the problem) or a Berry’s Phase. These
will be discussed later in the book and in later problems.
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