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Topics covered: Maps; Equivalence relations and classes; Orientability; Projective spaces; Elemen-
tary group theory; Vector spaces; Tensors; Topological spaces and elementary topology; Continuity;
Compactness; Connectedness, Homeomorphism and topological invariants.

These problems remain challenging (I think reasonably so); but I have separated out a bit more
math practice since this chapter is full of fundamental material. I tried to pull more interesting
exercises rather than rote ones, although I think having easy problems is nice. I'm a little rusty on
Aharonov-Bohm, so it would be nice if somebody could sharpen up my statement on 3e) — I know
what I have in mind, but I think as is the problem just suggests at it.

1

(a)

Short Math Questions

Nakahara Exercise 2.13: Suppose that the axioms of a topological space are modified so that
infinite (not just finite) intersections of open sets are open. Show that this reduces the usual
topology on R to the discrete topology.

Show that adding the point at infinity {oo} to the Euclidean plane R? is equivalent to com-
pactifying the space to the sphere S? by explicitly constructing a homeomorphism between the
two.

How many equivalence relations can be defined on a set of six elements? (Source: modifica-
tion of Problem 7.6 from Chapter 2 of Artin’s Algebra). Note that equivalence relations are
considered unique only if they define different sets of equivalence classes.

Show that attaching RP? to a surface by pipe decreases the Euler characteristic of the surface
by one. Source: Course entitled Topological terms in condensed matter physics, Spring 2009,
Problem Set 2, http://felix.physics.sunysb.edu/ abanov/Teaching/Spring2009/phy680.html.

A path from a to b in a generic space X is a continuous function f from the interval [0, 1]
into X such that f(0) = a and f(1) = b. In this problem, let G be an arbitrary subgroup of
GL,(R), the set of real, invertible n x n matrices.

(i) Prove that if a,b,c,d € G, and there are paths in G from a to b and ¢ to d, then there is
a path in G from a-cto b-d.

(ii) The set of matrices that are path-connected to the identity in G is called the connected
component of G. Prove that this set forms a normal subgroup of G.

Source: modification of Problem M.7 from Chapter 2 of Artin’s Algebra.



2 Discrete Normal Subgroups

Source: Problem 1, Problem Set 4 from 18.755 (Introduction to Lie Groups), Fall 2014.

Recall that a group is a set closed under some associative law of composition (“multiplication”)
in which an identity and inverse element exist. A Lie group is one in which multiplication is
continuous (in fact, it is smooth). Here we also define the center of a group as set of all elements
of a group which commute with every element of the group.

Suppose N C G is a normal subgroup of a connected Lie group G, and suppose the subspace
topology on N is the discrete topology. Prove that IV is contained in the center of G.

Note: you will need the fact that continuous maps preserve connectedness.

3 Background Independence: A “Topological Theta Term”

Source: Course entitled Topological terms in condensed matter physics, Spring 2009, Problem Set
1, http://felix.physics.sunysb.edu/ abanov/Teaching/Spring2009/phy680.html.

In condensed matter physics and string theory, a certain type of field theory is called a “topological
quantum field theory” if the action and resulting spectrum of states is background-independent,
meaning (in part) that it does not depend on specifying a metric in advance. This is very interesting
and well-studied in the context of quantum gravity (particularly by Witten), since it would be
useful to have an action for gravity that doesn’t rely on having a metric in advance (which results
in nonlinearity). In this problem we’ll examine the sense in which background-independence is
“topological” in a simple example. This will involve adding a term to the Lagrangian which is
a topological invariant, dependent on the fundamental group of the space (a concept that will
come up in later chapters).

Consider the classical action of a particle on a ring, with 6 a constant and ¢ the angle on the ring;:
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where T is some “proper” time. Reparametrizing time as 7 = f(t) we have dr = f'dt and dr? =
(f))2dt?; identify a “metric” via goo = (f’)? and g°° = (f)~2. From this we have ,/go0 = f’
(a) Rewrite the action in terms of ¢(t) instead of ¢(7).

(b) Find the form of the action if it is written in terms of the introduced metric (Note: the metric
is often called an einbein when introduced as an auxiliary field like this).

(c) Using the general formula for the variation of the action with respect to a metric (g = det g,,):
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find the stress-energy tensor for the particle on the ring and confirm that Tyg gives the energy
of the particle. What is the contribution of the “topological theta term” to the stress-energy
tensor?



(d) Suppose the particle travels around the ring once. By how much does the action increase/decrease?

(e) Secretly we’ve been looking at the quantum theory of electrons in a magnetic field! Recall from
the last problem set that the Lagrangian of an electron in a magnetic field is:
1
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Compare to the “topological” action in this problem. What does this imply about cyclic paths
of an electron around a solenoid? We will revisit such a scenario later in discussion of the
Aharonov-Bohm effect.

Thanks to Bob Knighton for the following addition to this problem:

To make the previous discussion more explicit: consider the following classical action of a charged
particle moving in an electromagnetic field with vector potential A and no electric potential (ie
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f) Rewrite S in the simple case of a particle confined to move on a ring of radius R.

g) Let us apply this to the specific case where the electromagnetic field is generated by a solenoid
of radius a < R passing through the axis of rotation of the particle. The vector potential in a
specific gauge is given by

_ {((Pr/27ra2) ¢, r<a
(®/27r) o, r>a

Where & is the magnetic flux passing through the solenoid. Use this to identify S with the
free action of a particle on a ring plus the topological 8 term given in the previous part. In
particular, give an expression for 6 in terms of given physical quantities.

h) The path integral formulation of quantum mechanics tells us that the amplitude to propogate
from the point x; at time ¢; to the point x; at time ¢ is given by
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Where the action is defined on paths begining and ending at our desired times and points and
where [ D[x(t)] defines an integration over all integrable paths between these points. Using
this, show that if an electron travels once around the solenoid, it picks up a phase factor and
identify the value of this phase.

This effect is the famous Aharanov-Bohm Effect, which shows that a particle can be influenced
by an electromagnetic field while never actually passing through it. The phase picked up as the
electron travels around the solenoid is known as a Topological Phase (because the solenoid
behaves as a topological defect altering the physics of the problem) or a Berry’s Phase. These
will be discussed later in the book and in later problems.



