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Topics covered: Fundamental groups and homotopy; Free groups and relations; Trees and edge
loops; Commutator subgroups; Higher homotopy groups; Universal covering spaces; Applications
to defects in condensed matter systems.

This week features a number of guest problems introducing widely varying applications of homotopy,
which I hope will become a recurring theme in later weeks, although there is a lot of material to
work through below. I have also included some less extensive exercises and a pure math problem
that I really like.

1 Short Math Problems

This problem consists just of three exercises: the first and third are not too hard, but are pretty
important for later material. The second is just a problem that I like, since commutator subgroups
are not emphasized in Nakahara.

(a) Nakahara 4.1: show that the n-sphere Sn is a deformation retract of the punctured Euclidean
space Rn+1 −{0}. Explicitly construct a retraction. Note: for n = 2, the punctured Euclidean
space R3 − {0} is the topological setting of pointlike defects in space like magnetic monopoles.
Since S2 is compact, it is extremely convenient to consider the topology (i.e., homotopy groups
and more) of S2 when discussing magnetic monopoles.

(b) Let F be the free group on x, y and let R be the smallest normal subgroup containing the
commutator xyx−1y−1.

(a) Show that x2y2x−2y−2 is in R.

(b) Prove that R is the commutator subgroup of F , i.e. the smallest subgroup containing all
commutators.

Source: Artin, Chapter 7, Problem 10.10.

(c) Nakahra 4.3: Recall from previous discussion that the first homology group of a connected
space is given by the abelianization of the fundamental group. It may or may not be surprising
that this fact is no longer true for higher homotopy groups. For instance, the third (and higher)
homology groups of S2 are all trivial. But π3(S

2) is isomorphic to Z.
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So, the problem: construct maps f : S3 → S2 which belong to the elements 0 and 1 of π3(S
2).

For more information as to why this problem is interesting and/or help solving it, look up the
Hopf fibration.

2 Bouquets and Earrings: A Love Story

A few weeks ago there was some discussion over whether there was a difference between the direct
sum and Cartesian product for Abelian groups. This problem will explore whether or not this is the
case in the context of the homotopy and homology of two very interesting, similar-looking spaces.

Consider the following two spaces:

The n-bouquet Bn, also called the rose of n petals:

This space is formed by the so-called wedge product of n copies of S1; where the wedge product
is defined by attaching each copy of S1 to the same point as shown above for the 4-bouquet. Note
that the space Bn should be considered as having a topology coming from this product structure of
copies of S1 and not the subspace topology of R2 looking at this figure as embedded in the plane.

This is an important distinction to make, because here is another interesting space; the Hawaiian
earring En of n rings:

This is the topological space given by the union of n circles attached at the origin in R2 with center
(1/k, 0) and radius 1/k for the kth circle.
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(a) Find the fundamental groups of Bn and En for finite n.

(b) Find the first homology groups of Bn and En for finite n.

Okay, the groups agree for finite n. Definitely nothing bad will happen when we take n → ∞,
right?

(c) Find the fundamental group of B∞.

(d) Explain why there is a natural injective map from π1(B∞) → π1(E∞). Find an element of
π1(E∞) that is not in the image of this map. (Thanks to Semon Rezchikov for pointing out to
me that the fundamental group of E∞ was more complicated than I initially thought).

Although the fundamental groups seem like they should be similar, the above suggests that the
fundamental groups are not the same; the fundamental group of E∞ is larger. But the distinction
in the previous part is pretty minor, and the spaces look very much alike, so it’s not really that con-
vincing that this means there is no homeomorphism between them. The following should convince
you of this, however incredible it seems:

(e) Show that B∞ and E∞ are not homeomorphic by showing that B∞ is not compact while E∞
is. Recall that compactness means that for every open cover (collection of open sets covering
a space) there exists a finite subcover.

Okay, I claim this has something to do with the infinite direct sum vs. infinite Cartesian product.
What is that?

(f) Compute the first homology group of B∞.

(g) The first homology group of E∞ can be written as J ×
∏∞
n=1 Z, where J is a terrible fac-

tor that I won’t pretend to understand that involves p-adic numbers – if interested, see
http://jlms.oxfordjournals.org/content/62/1/305 (this might seem confusing, if you think about
the Abelianization of a word of infinite length in π1(E∞) – I believe the problem comes from
the fact that it takes infinite steps to reduce such a word, which results in the Abelianization
not being just the näıve reduction into the product of Z generators to some powers). Ignoring
this factor of J , then, the first homology group of E∞ is the countably direct product of copies
of Z. Explain the connection of the following fact about the difference between infinite direct
sum and infinite Cartesian product to the context of this problem: the countably infinite direct
sum of copies of Z consists of sequences in Z with a finite number of nonzero terms, while the
countaby infinite Cartesian product of Z consists of all sequences in Z.

3 Monopoles from Grand Unified Theories

Thanks to Kevin Zhou for this problem.

Grand unified theories (GUTs) generically predict the formation of magnetic monopoles in the
early universe. The fact that we don’t observe these monopoles today was one of the motivations
for cosmic inflation. In this problem we show why GUTs make this prediction, using homotopy
theory.

Point Defects
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Homotopy groups can be used to detect topological defects in physical systems. Suppose the state
of a 2D system is characterized by a field ϕ(x) : R2 → M , where M is called the order parameter
space. Now consider a loop in the plane, given by γ : S1 → R2. Then we can consider the field
values we see as we traverse the loop, i.e. the function f = ϕ ◦ γ : S1 →M .

(a) Prove that if the field is continuous everywhere, f is homotopic to the constant map.

Therefore, if f is not homotopic to the constant map, the field must contain a singularity, which
we call a point defect. Moreover, we can classify point defects using the fundamental group π1(M).
Point defects are “topological” features because they are not affected by continuous deformations
of the field ϕ, which makes them more durable.

(b) Consider a planar magnet where the magnetization is a unit vector in the plane. Identify the
order parameter space and show that there are point defects. How could a point defect be
removed? Note: see Nakahara Section 4.9 if the terminology in this part is confusing.

Topological Defects

In a three-dimensional system, the fundamental group no longer detects point defects; it instead
detects line defects, one-dimensional objects which pass through the loop. In superfluids, these
are called vortices; in cosmology, they are called cosmic strings. In order to detect point defects,
we instead need to enclose them with a sphere, so they are characterized by the second homotopy
group π2(M).

(c) In three spatial dimensions, what kinds of defects do π0 and π3 detect?

(d) Consider a magnet in three dimensions, as in problem 1(b). What kinds of defects are present?

Symmetry Breaking

Spontaneous symmetry breaking is an important process that happened in the early universe. The
classic example is a complex scalar field φ in a Mexican hat potential, shown below.

The theory has a rotational U(1) symmetry since the potential doesn’t depend phase, but the
actual vacuum expectation value of the field is just a single complex number, which does not have
U(1) symmetry. We say the U(1) symmetry has been broken.

In general, let the unbroken symmetry group be G, and the remaining symmetry group of the vacua
be H. Then physically distinct vacua live in the order parameter space G/H, and we can extract
topological information from it.
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(e) Consider a set of four real scalar fields φ1, . . . , φ4 where the potential only depends on

|φ|2 = φ21 + φ22 + φ23 + φ24.

What is the unbroken symmetry group G?

(f) Suppose that the potential is a Mexican hat potential with minimum at |φ| = v. What is the
remaining symmetry group H?

(g) Is G/H a group?

Because symmetry breaking occurs in the early universe, topological defects can be left behind;
they are detected by homotopy groups as described in the previous part of this question. The four
kinds of defects and their corresponding homotopy groups are:

π0(G/H) : domain walls, π1(G/H) : cosmic strings,

π2(G/H) : monopoles, π3(G/H) : cosmic textures.

In order to find the homotopy groups of G/H, we must use the long exact sequence

. . .→ πn+1(G/H)→ πn(H)→ πn(G)→ πn(G/H)→ πn−1(H)→ . . .

The idea is similar to that of the chain complex we saw when dealing with homology. Each arrow
represents a group homomorphism. Consider a small part of this sequence,

H
f−→ G

g−→ K.

We say the sequence is exact if
im(f) = ker(g)

which implies that, like the chain complex, the composition of any two adjacent maps is the zero
map. Moreover, the First Isomorphism Theorem (also introduced in chapter 3) tells that K ∼= G/H.

(h) Using the long exact sequence and the table of homotopy groups in Nakahara, find the homotopy
groups of G/H. What cosmological defects exist in this model?

Grand Unified Theories

A grand unified theory starts with a large gauge group G that is spontaneously broken to the gauge
group of the Standard Model,

H = SU(3)× SU(2)× U(1).

The smallest gauge group that allows this is G = SU(5), yielding the Georgi-Glashow model.

(i) Show that the Georgi-Glashow model predicts monopoles.

We do not have enough machinery to show these monopoles are magnetic monopoles, but we will
in a few weeks.
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4 Anyons and Braid Groups

Thanks to Saran Prembabu for this problem.

It is well known that in three dimensional space, particles can be classified as fermions or bosons. It
is often said that fermionic wavefunctions ψf satisfy ψf (x1, x2) = 〈x1, x2|ψf 〉 = −ψf (x2, x1) while
bosonic wavefunctions ψb satisfy ψb(x1, x2) = ψb(x2, x1), where |x1, x2〉 is the localised state with
one particle in x1 and one particle in x2. But this is a misleading abuse of notation, because really
|x1, x2〉 = |x2, x1〉: the operators that create particles at each point commute. This problem will
describe the quantum statistics of bosons and fermions in terms of homotopy.

Configuration Spaces

First, a brief definition: a configuration space Md
n is a topological space defined as (Rd)n−δ

Sn
,

where (Rd)n is the product of n copies of the topological space Rd. (Rd)n − δ is the subset
{(x1, x2, . . . , xn)} ⊂ (Rd)n of ordered n-tuples of vectors of length d such that no two d-vectors
in an n-tuple agree in every entry; i.e., all d-vectors in an n-tuple describe distinct points in Rd.
This is to say that no two particles coexist at the exact same point. Finally, the quotient by the sym-
metric group Sn means that (x1, x2, . . . , xn) is identified with any permutation of the coordinates:
(xσ(1), xσ(2), . . . , xσ(n)) for any σ ∈ Sn, since particles are identical.

(a) Draw M1
2 , M2

1 and M1
3 .

(b) Describe how M2
2 could look like on a 4-d Cartesian grid.

(c) All of the possible arrangements of n indistinguishable non-superimposable particles in d-
dimensional space form a topological space. What is this topological space?

In reality, the argument of a wavefunction of multiple identical particles isnt an arbitrary ordered
n-tuple, but rather a single point in a configuration space, for the reasons described above (no
coexisting particles, particles being identical). Furthermore, the wavefunction is not actually a
function, but a multi-valued quantity for each point in configuration space. This distinction matters
when discussing fractional statistics.

Homotopy Groups of Configuration Spaces

Now we will study the topological properties of configuration spaces, proving a famous result by
Professor Artin’s dad. It is recommended that you think visually about these things.

(d) What is π1(M
1
n) for any n?

(e) What is π1(M
d
1 ) for any d?

(f) What is π1(M
3
2 )?

(g) What is π1(M
d
2 ) for d > 3? (an intuitive justification is sufficient here; the topological space

here is hard to visualise, but as a hint try to use the result of part (c) and imagine what an S1
loop in Md

2 means in this context)

(h) What is π1(M
d
n) for n ≥ 2 and d ≥ 3?

Braid Groups
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Note that above we skipped the d = 2 case. That is because it is interesting. π2(M
2
n) is called the

braid group Bn on n strands.

(i) Prove that M2
2 = R2 ×A, where A is a punctured disk.

(j) Find π1(M
2
2 ) using the product property of homotopy groups. Convince yourself that this makes

sense when considering two particles going around each other in a plane. Note in particular
that π1(M

2
2 ) does not fit the pattern suggested in part (g).

(k) Describe π1(M
2
3 ) in terms of some generators and relations. (Hint: α : [0, 1] → M3

2 is a
function α(t) = (α1(t), α2(t), αn(t)), where αj : [0, 1]→ R2. Consider simultaneously graphing
the functions α1(t), α2(t), αn(t) on a 3-d coordinate system)

(l) Prove by induction that π1(M
2
n) (for n ≥ 2) is an infinite group generated by n− 1 generators

σ1, σ2, . . . σn−1, with the defining relations σiσi+1σiσ
−1
i+1σ

−1
i σ−1i+1 = 1 for any 1 ≤ i ≤ n− 2 and

σiσjσ
−1
i σ−1j = 1 for any |i− j| ≥ 2. This is the presentation of the braid group on n strands.

Braid Groups and Quantum Statistics

Now we will learn why we randomly decided to compute various first homotopy groups in the above
problems. Suppose a collection of identical particles initially has a wave function ψa(q, 0) at time
t = 0, where q ∈ Md

n is a configuration space point. Then at time t = T the wave function is
ψa(q, T ) =

∫
dq〈q, T |q, 0〉ψa(q, 0).

When π1(M
d
n) is trivial, 〈q, T |q, 0〉 =

∫
Dq exp (iS[q]) (possibly multiplied by an arbitrary com-

plex phase factor) where Dq is an integration over all loops in Md
n,. But when π1(M

d
n) is non-

trivial, this path integral is actually a discrete sum of integrals from each homotopy equiva-
lence class, and each equivalence class can have its own arbitrary phase factor. So, 〈q, T |q, 0〉 =∑

α∈π1(Md
n)
eiρ(α)

∫
Dq exp (iS[q]) where ρ : π1(M

d
n)→ R. To be consistent with quantum mechan-

ics, we can (but wont) prove that the only condition ρ must satisfy is that ρ(α · β) = ρ(α) + ρ(β)
where · is the group operation in π1(M

d
n), i.e. ρ must form a one-dimensional additive representation

of π1(M
d
n).

(m) Find all possible homomorphisms ρ if d ≥ 3 and n ≥ 2

(n) In the previous part, one of the homomorphisms corresponds to bosonic statistics and one of
them corresponds to fermionic statistics. Which one is which?

(o) Find all possible homomorphisms ρ if n = d = 2

(p) Find all possible homomorphisms ρ if d = 2 and n ≥ 2.

(q) Show that for identical particles in two dimensions starting with wave function ψa, it is possible
to rearrange them according to the group action of one of the generators σj of the fundamental
group so that you end up with the wave function eiνπψa, where ν can have any real value in
R/2Z. The value of ν gives the “statistics” of these particles: ν = 0 for bosons, ν = 1 for
fermions, and for fractional values the particles are called anyons.
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5 Instantons and Excitons in 2D Condensed Matter Systems

Thanks to Mike Winston for this problem.

In condensed matter physics, there is something called the XY model. It covers a lot of 2D systems,
like liquid crystals.

The basic idea is that the degrees of freedom of some system live in a 2D plane. We can for example
consider a system of particles that each have some spin at every point, where the spins are required
to be coplanar. Let’s call this a map from R2 to S1, to suggest using the machinery of homotopy
groups (really homotopy sets, since we aren’t going to endow this with a group operation).

(a) Prove that the homotopy set of the 2D spin system described above is trivial, in the sense that
all maps R2 → S1 are homotopic to the constant map.

Though this set is trivial, we can consider an extension of the problem. Suppose that instead of R2

we have R2 minus a point; the punctured plane. In physics, this puncture would correspond to
an excited point or exciton where the spin is not defined.

(b) What is the new homotopy set of this system?

(c) What is the homotopy set if there are multiple excitons at multiple spatial points?

Here is also a more difficult extension of the problem: take for granted that one can consider ground
states of the weak force to correspond to maps from S4 (R4 with the boundary identified) to SU(2).
SU(2) has the same topology as S3, and π4(S

3) is Z2 to be proved below).

(d) Prove that π4(S
2) is Z2.

(e) Argue that this means that an instanton (stable higher-energy perturbation of the ground state)
for the weak interaction is its own antiparticle.
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