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Topics covered: Stokes’ theorem, de Rham cohomology, de Rham’s thoerem, Poincaré’s lemma,
Poincaré duality, Cohomology rings and the Künneth formula, Pullback of de Rham cohomology
groups, homotopy and the first cohomology group.

Using cohomology, the main algebraic and topological results from homology and homotopy can
be connected with analysis and Lie theory. Differential forms on manifolds turn out to be dual
to chains on manifolds via de Rham’s theorem; the duality is provided by integration. In high
energy physics, differential forms and their resulting cohomology are ubiquitous as different types
of potentials and corresponding fields, from electromagnetism up through Yang-Mills theory and
string theory.

Thanks to Semon Rezchikov for clarifying why Nakahara switches to R-coefficients to discuss sin-
gular homology and cohomology despite using Z-coefficients previously in the rest of the book.
The reason is that the isomorphism of homology and cohomology groups does not hold up with
Z-coefficients; each gets a different factor of torsion subgroups, and even orientable manifolds that
could be found in the wild can have nontrivial torsion subgroups.

1 Short Math Problems

(a) Rewording of Nakahara Exercise 6.5. Let M = M1 ×M2 be a product manifold. Show that
χ(M) = χ(M1) · χ(M2). Hint: use the Künneth formula.

(b) Rewording of Nakahara Example 6.7 Define Ω = sin θdθ ∧ dφ as a two-form on S2. Verify that
Ω is closed, and prove using Stokes’ theorem that Ω is not exact. However, show also that Ω
can formally be written as the exterior derivative of a one-form. Explain why Ω is still not
exact despite this formal expression.

(c) Let A be the vector field on Cn defined by A(~z) = i~z, zk = xk+iyk. Find a function f : Cn → R
such that ω(A, V ) = df(V ) for all vector fields V , where ω =

∑n
k=1 dx

k ∧ dyk is the standard
symplectic form.

(d) Compute the de Rham cohomology groups of SU(2) and SU(3) (directly, not by appealing to
isomorphism with homology groups).

Parts (c) and (d) taken from problems from MATH 4B03, McMaster University,
http://ms.mcmaster.ca/minoo/Math4B03.html, Problem Sets 4 and 5.
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2 Cohomology and the Magnetic Monopole

The topological setting of the magnetic monopole is the space R3\{0}, since the point containing
the monopole is singular (in terms of the magnetic field or vector potential) and must be removed
from the space.

(a) Prove that, in the absence of a magnetic monopole, a single vector potential suffices to describe
the magnetic field everywhere.

Solution.
In the absence of the magnetic monopole, the topology is R3 since no point is removed. Since
the first cohomology group of R3 is trivial, all one-forms are equivalent to the zero form and
all differ by a globally defined exact form. So all vector potential one-forms are globally gauge-
equivalent, so a second vector potential would be redundant.

(b) We have shown in previous problem sets that in the presence of a single magnetic monopole,
two vector potentials suffice to describe the field everywhere, although a single cannot. Prove
that these two vector potentials must be locally gauge-equivalent, i.e. differ by the gradient of
a scalar function (i.e. a (locally) exact one-form).

Solution.
In this part and the next part, we use the fact that the sphere S2 is a deformation retract of R3\{0}.
Deformation retraction preserves cohomology, so we can feel free to work with S2 for the purposes
of cohomology.

Now, the first cohomology group of S2 is trivial. So all one-forms on S2 must differ by an exact
form. So we’re done, right? It seems like two vector-potential one-forms must differ by an exact
one-form.

Unfortunately, this is not correct. The reason is because the vector potentials are not globally
defined for the magnetic monopole. One of them misses the North pole and one of them misses the
South pole. The region on which both are defined is S2 missing these two points. But this space
deformation retracts to the circle S1, which has first de Rham cohomology group of R. So in fact
the two vector potentials cannot be globally gauge equivalent! Of course, they will be locally gauge
equivalent - this is a consequence of a corollary of the Poincaré lemma; since both vector potential
one-forms define the same field strength, their difference is closed and thus locally exact.

Note that the argument above is not an all-encompassing proof. To make it fully rigorous we would
have to deal with a lot of annoying details, I think. But one can note that no vector potential can
be defined over the entirety of S2 here, since this contradicts Stokes’ theorem using the fact that
S2 is without boundary. The real work would have to be in dealing with vector potentials that are
defined on even less than S2 minus a point!

We previously said that the magnetic field due to the monopole is ~B = g
r2
r̂. Let F be the field-

strength two-form associated with this magnetic field (the Faraday tensor is a matrix; you can write
it in a tensor product basis and convert this to a wedge product basis i.e. two-form basis, see p.
196).
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(c) Show that g = 1
4π

∫
S2 F . Why can the integration be defined over S2 instead of R3\{0}?

Solution.
We have discussed in the previous part why the integration can be defined over S2, due to the
deformation retraction – any integral-defined topological invariant will be preserved (since this
is given by the cohomology, loosely). There is a leap from saying cohomology is preserved to
saying that integrals of cohomology classes are preserved; one can make this leap by proving
theorems about the Chern classes later discussed, which are directly integral-defined quantities.

The Faraday tensor here (as a two-form) would be (in spherical coordinates; somewhat tedious
to derive):

F = r2 sin θBr(dθ ⊗ dφ− dφ⊗ dθ) = r2 sin θBrdθ ∧ dφ

Integrating, we have:

1

4π

∫
S2

F =
1

4π

∫
S2

r2 sin θ
g

r2
dθ ∧ dφ =

g

4π

∫
sin θdθdφ = g

(d) Relatedly, what de Rham cohomology group does g index? Later, we will see that g is also equal
to a different topological invariant called the first Chern class of the S2 × U(1) fiber bundle.
The approach is convenient in that it allows us to construct similar topologically protected
charges knowing only the gauge group of a theory (recall that U(1) is the gauge group of
electromagnetism).

Solution.
The integer g is given by the integral of the field-strength two-form over S2 which is closed and
without boundary. Since it is without boundary, the integral of an exact two-form over S2 is
trivial.

The closed two-form F is defined everywhere over S2. Shifting it by an exact two-form does
not change the integral that defines g by the previous paragraph. So g indexes H2(S2) =
H2(R3\{0}).

3 Trivializing the Cohomology

Rewording of Problem 1 from http://bohr.physics.berkeley.edu/classes/222/hws/hw8.pdf. I believe
the problem is actually much easier than they intended, so I have removed the hint – let me know
if this is not the case.

Let M be a manifold of dimension D and suppose there is a deformation retract of M onto a
submanifold of dimension d < D. Show that Hr(M) = {0} for r > d.
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