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In this lab, we fired a projectile ten times from a spring gun onto a landing site covered in carbon paper to
mark the landing locations on impact. The range of the projectile recorded from the carbon paper marks
after each trial is recorded in the table below:

Trial Number Range (m) Trial Number Range (m)
1 1.923± .0005 6 1.937± .0005
2 1.918± .0005 7 1.940± .0005
3 1.941± .0005 8 1.929± .0005
4 1.950± .0005 9 1.944± .0005
5 1.932± .0005 10 1.935± .0005

Table 1: Range of projectile fired from spring gun in each of ten trials. Error reflects the ability to measure
distance only to the nearest millimeter using the two-meter stick.

1. The average range of the projectile calculated from the above data is R = 1.935 m. The measurement
uncertainty is of order less than .0005 m while the statistical fluctuations in the range is of order .01 m
or more. Since this is a difference of about two orders in magnitude, we are justified in neglecting
the measurement error and taking only the statistical spread in the range as our error on R. This
statistical uncertainty is ∆R = .02 m. The measured range is therefore:

R±∆R = (1.94± .02) m.

2. Using the formula for the range in terms of the initial velocity and launch angle, we can calculate the
average velocity from the average range:

R =
v20 sin 2θ

g
=⇒ v0 =

√
gR

sin 2θ
(1)

Similarly, we are given the formula for the uncertainty in the average velocity in terms of the uncertainty
in the average range:

∆v0 =
∆R

2
√
R

√
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(2)

Using Equations (1) and (2) and the fact that the spring gun was set at an angle of 64◦, we calculate
the average velocity and uncertainty on the velocity as:

v0 ±∆v0 = (4.91± .02) m/s (3)

It is instructive to also examine the degree to which the uncertainty in the angle of the spring gun plays
a role. The measurement uncertainty in this angle is ∆θ = 0.5◦ since the resolution of the protractor
measuring the angle is to the nearest degree. We are given the more general formula for the uncertainty
in the average velocity including this angular uncertainty as:

∆v0 =

√
g

4R sin 2θ
(∆R)2 +

gR cos2 2θ

sin 2θ
(∆θ)2 (4)
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Note that we must convert ∆θ to radians in the above formula so that the units work out correctly,
since radians are technically unitless. Plugging in the quantities calculated above, we find the revised
result for the uncertainty:

∆v0 = .03 m/s (5)

Remarkably, we find that the angular uncertainty is in fact an important correction which modifies the
uncertainty in average velocity by a factor of about 1.5.

A last comment on this part is that it is useful to check whether or not this velocity is physically
reasonable. We note that the average time the projectile was in the air was about a second each time
it was fired. To find the average velocity, we need the length of the trajectory. This is nontrivial for a
parabola, but to get order of magnitude let’s approximate the parabola by a semicircle. The diameter
of this semicircle is about 2 m since this is the order of the average range, so the arc length is π m. We
should thus expect a velocity on the order of π m/s which is consistent with our computation above
to order of magnitude.

3. Now, we have derived in the pre-lab that the trajectory of the projectile (x(t), y(t)) is given by:

x(t) = (v0 cos θ) t, y(t) = (v0 sin θ) t− 1

2
gt2 (6)

when the origin is measured from center of the ball at the moment of launch and g is taken to be
positive. Plugging in our measured values of v0 and θ to this formula we obtain the trajectories
numerically:

x(t) = (2.15 m/s) t, y(t) = (4.41 m/s) t− (4.90 m/s2) t2 (7)

4. Yes, given our values for v0 and R, the value θ = 90◦ − 64◦ = 26◦ would also allow us to hit the
target. Conceptually this is because at the larger angle, the projectile has a lower horizontal velocity
but spends more time in the air. At the smaller angle, the projectile spends less time in the air but
has a compensating larger horizontal velocity. Mathematically, note that Equation (1) which gives
the range as a function of initial velocity and angle is directly proportional to sin 2θ. Since sinx is
symmetric about x = 90◦, the range is symmetric about 2θ = 90◦ =⇒ θ = 45◦. Thus θ and 90◦ − θ
yield the same range.

It is interesting to consider whether air resistance would cause the trajectory at smaller or larger θ to
have a larger range. We are given the the force due to air resistance scales as the velocity squared and
acts opposite to the direction of motion. For the smaller theta this force acts primarily to reduce the
horizontal velocity and vice versa. So for small theta the acceleration due to air resistance goes as v2x,
the average change in velocity scales as v2xt and the change in range scales as v2xt

2. For large theta, the
acceleration due to air resistance scales as v2y, the average change in y velocity scales as v2yt. Note that
this tends to slow down the projectile faster on the way up and the way down, so the effects roughly
cancel and the time of flight is roughly the same. Thus we should expect that the air resistance has a
more significant effect at small θ, where the change in horizontal velocity affects the range more than
the negligible change in time-of-flight at large θ.

5. For the second part of the lab we set two rings at vertical positions so that the trajectory of the
projectile would pass through the rings. In order to set the vertical positions, we first obtained the
vertical height of the trajectory as a function of the horizontal distance away from the launcher. Using
Equation (6), we can solve for t given x from the first equation as t = x

v0 cos θ . Substituting into y(t),
we find the trajectory:

y(x) = x tan θ − gx2

2v20 cos2 θ
(8)

Notice that this is in fact a parabola i.e quadratic in x as expected.
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6. Given this formula for the trajectory, we found where to set the vertical height of the rings given
the horizontal positions of each ring. The rings were at distances x1 = .343 m and x2 = 1.142 m.
Equation (8) thus prescribes the corresponding vertical positions y1 = .579 m and y2 = .961 m.

7. If the rings were oriented perpendicularly to the table, then these vertical positions need only to be
accurate to within the radius of the ring minus the radius of the ball = .05 m−.01 m = .04 m. However,
we tilted the rings by an angle φ to the horizontal. This changes that error ∆y as shown in Figure 1
From Figure 1, the new vertical error is:

Figure 1: Left: the distance ∆y at which the rings may be shifted vertically while still containing the
trajectory of the ball depends on the angle φ at which the rings are tilted. Right: the geometrical setup of
the scenario on the left.

∆y =
r

cos(90◦ − φ)
− rball (9)

where r = .05 m is the radius of the ring. We estimated by measuring the horizontal and vertical
distances to the center of the rings that the rings were oriented at an angle of φ = 50◦ to the horizontal.
Therefore, the permissible vertical shift is:

∆y =
.05 m

cos 40◦
− .01 m = .056 m (10)

We obtain an extra margin of error due to the fact that the trajectory is headed upwards; the angular
shift of the ring lets the back end of the ring travel further upwards to meet the higher trajectory. Note
that this estimate is only true where the trajectory has small curvature i.e. away from the top of the
trajectory, as you can see from the triangle in Figure 1 which approximates the trajectory as linear.

8. No, we did not make both rings on the first try. The ball clipped the right side of the second ring and
bounced off. However, the ball was perfectly aligned along the other two axes.

One obvious culprit seems like air resistance. We can put a general bound on the magnitude of the air
resistance force using the fact given to us that drag force is approximately F = 1

2ρAv
2, where ρ is the

density of air, A is the cross-sectional area of the ball, and v is the velocity. We can approximate the
velocity of the ball as v0

2 = 2.46 m/s. We are given that the density of air is about 1.23 kg/m3, and
since the measured diameter of the ball is d = .02 m, A = π(.012 m2). The average magnitude of the
force is thus about F = 1.2 × 10−3 N. Since we are given that the mass of the ball is about .02 kg,
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the average magnitude of the acceleration is: a = .06 m/s2. Over the roughly second-long duration of
flight, this air resistance force thus decreases the velocity by about v = .06 m/s. This is close to the
scale of the uncertainty on the average velocity and so is probably not a major effect. At the location
of the second ring, which we’d expect the ball to reach at t = 1.142 m

4.85 m/s cos 64◦ = .54 s, the height would

then be:

y = (4.85 m/s) sin 64◦(.54 s)− (4.90 m/s2) (.54 s)2 = 0.925 m (11)

This is change of ∆y2 = .036 m from the estimate without air resistance. Since the radius of the ring
is .05 m, this should not be a sufficient error as to cause the ball to miss in the vertical direction! Note,
however, that the error is on the same order of magnitude as the radius of the ring, so we should be
more careful with exact numerical factors to determine precisely if the air resistance is enough to cause
the ball to miss.

Regardless, since the air resistance doesn’t cause any shift of the ball in the transverse direction, it’s
unlikely that this was the dominant source of uncertainty in our calculations. More likely to have
caused problems was the uncertainty in the transverse angle of the spring gun. We did not have a
separate protractor to measure this angle; however, we can estimate that the spring gun was perfectly
straight to within an angle ∆φ = 3◦. To see how large a shift in the transverse direction this could
cause at the location of the second ring, consult Figure 2: We see that the slight angle to the spring

Figure 2: Possible transverse shift in ball trajectory due to angular uncertainty of 3◦ of the alignment of the
spring gun in the transverse direction

gun could cause a transverse shift of:

∆z = (1.142 m)(tan 3◦) = .06 m (12)

This is actually larger than the radius of the ring: therefore, this slight angular displacement of the
spring gun would be sufficient to cause the ball to clip the side of the ring as occurred on our first try.
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