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We're Here to Learn How Math is Done

@ Goal: understand the math research and communication
process through experience
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Wait, How is Math Done?

@ Learn about problems
@ Answer problems

@ Present work (written/oral)
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Find Math Papers at the arXiv and Journals

We gratefully acknowledge support from
the Simons Foundation
and member institutions

Login
Search or Artcle 1D Al papers

(Holp | Advancod soarch)

Open access to 1,279,823 e-prints in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics
Subject search and browse: Physics ] Search | Form Interface | | Catchup

20 Apr 2017: Applied Physics subject area added to arXiv
10 Mar 2017: New members join arXiv Member Advisory Board

06 Mar 2017: arXiv Scientific Director Search

10 Feb 2017: Attention Submitters: our TeX processing system has been updated

See cumulative "What's New" pages. Read robots beware before attempting any automated download

Mathematics

« Mathematics (math new, recent, find)
includes (see detailed description): Algebraic Geometry; Algebraic Topology; Analysis of PDEs; Category Theory; Classical Analysis and ODES; Combinatorics; Commutative Algebra;
Complex Variables; Differential Geometry; Dynamical Systems; Functional Analysis; General Mathematics; General Topology; Geometric Topology; Group Theory; History and Overview;
Information Theory; K-Theory and Homology; Logic; Mathematical Physics; Metric Geometry; Number Theory; Numerical Analysis; Operator Algebras; Optimization and Control; Probabilty;
Quantum Algebra; Representation Theory; Rings and Algebras; Speciral Theory; Statistics Theory; Symplectic Geometry
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Several Steps of Doing Math

e Find good questions to ask
@ Figure out ways to investigate the questions

@ Convince yourself and others of what you learn
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Tell People About What You Learn

o Typeset mathematical work in IATEX and Beamer
e Work on techniques for improving technical writing (journals)

@ Practice with technical oral presentation (group meetings,
seminars, colloquia)

Matthew DeCross Explorations in Mathematical Inquiry



Introduction

Schedule/Format

General Communication Techniques
IATEX Introduction

Presentation Techniques

Beamer Introduction

Theorems and Proofs

Group Presentation and Topics

Conclusion/Questions

Matthew DeCross Explorations in Mathematical Inquiry



Overview of the Schedule

@ Tuesday: Math communication bootcamp
@ Wed - Next Tues: Sandbox problems
@ Next Wed - Thurs: Research topic, develop presentation

@ Next Fri: Group presentations
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Module Assignment Schedule

@ Small (15-20 min) assignments due daily

@ Short (2 page) paper on sandbox problem due next Tues
(more on this later)

e Group presentation next Friday (more on this later)
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Word Processors Are Bad, M'Kay?
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Word Processors Are Bad, M'Kay?

e Equation/figure references, bibliography, math rendering,
whitespace, numbering, encoding problems, etc. [1612.04334]

‘With this in mind, a brute force algorithm was created to solve for the three spatial angles
and semimajor minor axes of the least-squares ellipse. However, such an algorithm was
computationally intensive, slow to run, and of questionable precision. Therefore, 2 genetic
algorithm called TransformerEvolution was created to solve for the same five ellipse parameters
by evolving toward the minimum o, where:

2l

where s the number of position data points, (x, 7, 2) are the coordinates of a data poit, and
(. 2, 7:) are the coordinates of the closest point on an ellipse along the geodesic, that s, the

shortest possible path. o the elliptical model. Essentially, this solves for the true least-squares

ellipse by varying the par ‘potential il the averag fomall

data points on the model is minimized. This algorithm, the results of which are displayed in Fig.

 crosrsae 7. both precisely and
efficiently produces one of
the ellipse equations (5) or (6)
2s 2 model of cryogenic
deuterium-ritium target

‘motion. These two similar

equations are necessary
because alignment along the

correct axis s a required

starting condition for this

Fe.
e

e ropt ‘genetic algorithm to run.

As a check also note that at late times

1> VN Gw-"2 1«»‘\”“; (1.23)

which reproduces the plateau value from eq. (1.13).
From (4.22), we see that when t ~ O(1), then dG/dt ~ O(1/v/N), while when t ~
O(V/N) at central times in the ramp, dG/dl ~ 1/\' So the platean height will be para-
ctrically controllod by 4G/ s cotral tmen i t Liplicd by the duration of
n. p (which is determined by the inverse of the ize, which is 1/v/N). This
« the xtimato 1/ x VN ~ 1/V/¥ for the platean hefght. The more rapid growth with
ww of O(1/v/N) in the early part of the ramp gives a logarithmic correction, resulting in
a plateau height of log N/VN ~log(1/1)

Figure 7: The estimate (1.18) for the ramp and the plateau with 5 = 2 (solid lines) v
the numerically cvaluated progressive time averaged regularized (wo poiat function (dots)
for 11= 0.05,0.075,0.1,0.125,0.15,0.175 (from bottom to top).

4.3 Dip
In this subsection, we consider the temporal coarse graining of (4.1) with generic progressive
time window of width At  at (generalizing (4.14)), which we will denote by

Galt) ‘/MM««J(;U') (4.24)

ap

al

Such a generalization does not. modify the conclusions about the late part of the ramp and
the platean time. However, we do expect, the precise location of the dip to be sensitive to
the parameter a and therefore the specific coarse graining that, we pick. As we will see, the
scaling with the entropy is independent of a.
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@ Ahlfors' Complex Analysis

COMPLEX INTEGRATION 127

Wo show now that f(2) is identically zero in ll of €. Let B be tho
set on which f(2) and all derivatives vonish and F the set on which the
funotion or one of the derivafives is different from zero. Ey is opon by
the above ressoning, and L is open beeause the function and all deriva-
tives arc continuous. Thereforo cither Ey or E; must be empty. If By
is empty, the function is identically zero. If Eq is cmpty, f(2) can never
vanish together with all its derivatives.

Assume that f(z) is not identically zero. Then, if f(a) = 0, there
exists a first derivativo f(a) which is different from zero.  We say then
that ais & zer0 of order h, and the result that we have just proved expresses
that there are no zeros of infinite ordor. In this respect an analytic
function has the same local behavior s & polynomial, and just as in the

case of polynomials we find that it is possible to write fz) = (= — a)¥(2)
when» fh(x) is nalytic nd @) 2 0.

N(@) # hbor
houd ol and s = a s the ml.ly 2ero of f(2) in this neighborhood. Tn
other words, the zeros of an analytic function which docs not vanish
identically are isolated. This property can also be formulated a¢ a
uniqueness theorem: If f(z) and g(z) are analytic in 9, and if §(z) = gz}
on a set which has an accumlation point in 9, then f(z) is identically
equal 10 g(z). The conclusion follows by consideration of the differonco
7@ = 9(2).

Particular instances of this result which deserve to be quoted are the
following: If f(z) is identically zero in a subregion of &, then it is identi-
cally zero in 2, and the same is true if f(z) vanishes on an aro which
does not reduce to a point.  We can also say that an analytic function is
uniquely determined by its values on any set with an accumulation point
in the region of analyticity. This does ot mean that we know of any
sway in which the values of the function can be computed.

We consider now a function f(z) which is analytic in a neighborhood
of a. except perhaps at @ itself. In other words, f(z) shall be analytic in
& region 0 < |z — af < 5. The point a is called an isolated singularity
of f(z). We have already treated the case of a removable singularity.
Since we can then define f(a) so that ((?) becomes analytic in the dis
[z — af < , it needs no further consideration.t

1f Tim f(z) = o, the point a is said to be a pole of (z), and wo sof
(@) = ». Thoreexistsa 8’ < ssuch that f(z) # 0for0 < |z — af < &'
In this region the function g(z) = 1/f(z) is defined and analytic. But
the singularity of g(z) at a is removablo, and g(¢) has an analytic cxien-

1 i o emovablesinuleity, )i rocuenly said o b replar ot ; this
term s somctimes used 6 & synonym for analytic.

Font, Whitespace, and General Formatting Matter a Lot!

128 cOMPLEX ANALYSIS

sion with g(a) = 0. Sinee g() does not vanish identically, the zero al
ahas a finite order, and we can write g(z) = (= — @)*u(z) with gr(a) # 0.
“The number h is the order of the pole, and f(z) has the representation
J@) = (z ~ @)z where fu(s) = 1/gs(z) is analytic and different from
710 in a neighborhood of a. ‘The nature of & pole is thus exactly the
same & in the case of & rational function.

A function f(z) which is analytic in  region 8, except for poles, is said
to be meromorphic in . More precisely, o every o € there shall exist
a neighborhood |z — a| < 5, contained ia €, such that cither /(2
Iyticin th orclse f(2) i <le—al <3,
and the isolated singularity is s pole. Observe (hat the poles of a mero-
morphic_function are isolated by definition. The quotient f()/g(e) of
two analytic functions in @ is & meromorphic function in &, provided
that g(z) is not identically gero. ‘The only possible poles are the zeros of
4(2), but a common zero of /(z) and g(z) can also be o removable singu-
larity.  Tf this is the ease, the value of the quotient musl be determined
by continuity. More generally, the sum, the produet, and the quotient
of two meromorphic functions are meromorphic. The case of an iden
ally vanishing denominator must be excluded, unless we wish to con-
sider the constant w as a meromorphic function.

For a more detailed discussion of isolated singularities, we consider
the conditions (1) lim |z ~ al<|f(:)] = 0, (2) lim |z — alo| ()] =
real values of . If (1) holds for a certsin a, then it holds for all larger a,
and hence for some integer m. Then (= — a)/(z) has s removable singu-
larity and vanishes for z = a. Either f(z) is identically zero, in which
case (1) holds for all @, or (z = a)"f(z) hos a zero of finite order k. In
the latter case it follows at ovee that (1) holds for all @ > h = —~m — &,
while (2) holds for all a < k. Assume now that (2) holds for some a
then it holds for «ll smallor a, and hence for some integer n. The func-

w, for

tion (z — @)"f(z) has & pole of finite order I, and setting k = n + I we
“The discussion
arc three possibilities: (i) condition (1) holds for all a,
exists an integer h such that (1)

find again that (1) holds for « > & and (2) for & < h.
shows that there
and f(z) vanishes identically; (i) ¢
holds for a > hand (2) for a < h;

Case (i) is uninteresting. In case (i) h may be called the algebraic
order of (z) at a. 1t is positive in case of a pole, negative in case of u
7ero, and 26r0 if f(z) is analytie but » 0 ot a. The remarkable thing is
that the order is always an integer; there is no single-valued analytic
function which tends to 0 or = like a fractional power of |z — aj.

case of a pole of order h, let us apply Theorem 8 to the analytic

funetion (z — a)*f(z). We obtain a development of the form

@ = ayf(s)

Bi+ Bisz ~ 0) +

C 4 Bz — ) 4 o)z — a




Font, Whitespace, and General Formatting Matter a Lot!

@ Separate important equations and theorems out onto their
own line

@ Use (don't overuse) bold/italics for emphasis

@ Font needs to be generally not painful
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Even in KTEX, Obfuscation is Common

e Rudin’s Principles of Mathematical Analysis

We now examine this situation a little more closely. Let 4 be the set of
all positive rationals p such that p? < 2 and let B consist of all positive rationals
psuch that p? > 2. We shall show that 4 contains no largest number and B con-
tains no smallest.

More explicitly, for every p in A we can find a rational g in A such that
p <g, and for every p in B we can find a rational ¢ in B such that g < p.

To do this, we associate with each rational p > 0 the number

_ p’-—2_2p+2.
@ q=p p+2_p+2
Then
2p*-2)
4 2= 77,
@ q 7727

If p is in A then p? — 2 <0, (3) shows that ¢ > p, and (4) shows that

g* <2. Thus g is in A.
If pis in B then p? — 2 > 0, (3) shows that 0 <g < p, and (4) shows that

¢* > 2. Thus ¢ isin B.
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Define Terms and Variables Precisely Before Using Them

Right triangles are defined by a?> + b?> = c2. The Pythagorean
Theorem says that right triangles with side lengths 3 and 4 have a
hypotenuse of length 5.
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Define Terms and Variables Before Using Them

Let a, b, and ¢ be positive integers. If a®> + b> = ¢?, then a, b, and
c are the side lengths of a right triangle, with ¢, the hypotenuse,
being the longest. This is the Pythagorean Theorem. According to
the Pythagorean Theorem, if 3 and 4 are two side lengths of a
right triangle, then the third side has either length 5 and is the
hypotenuse, or length 1/7, in which case the side of length 4 is the
hypotenuse.
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Extraneous Symbology is Obfuscation

@ See [1302.5453] vs. [quant-ph/0504208]

» Proposition 9. For a pure stabiliser state p = |)(1)| with associated error group G < W,
and any J C X, the entropy

dy
S(J) = S(ps) = log —=L-. (1)
|Gyl
Here, dj =[], dz and
Gy ={®wcx9s €G:Va ¢ J go = 1} CG,

and (/.'\,v = G;/Cy is the quotient of G ; with respect to the center C; = G;NC.

In other words, f € S5 if o(f) acts as the identity on the
party a; f € Sq iff o(f) acts as the identity on all parties
3 # «. In the case n, = 0 we shall use a convention
Sa =0 and S5 = S. If S is a stabilizer group of some
state, we shall use the terms local (co-local) subspace and
local (co-local) subgroup interchangeably.
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Not All Symbology is Evil

If x is a positive real number greater than or equal to two such that
no positive real number greater than or equal to one and smaller
than x divides x, then we call x a prime number. For any positive
integer n there exist two prime numbers x and y with x greater
than y without loss of generality such that x minus y is at least n.

For all positive integers n, there exist two prime numbers x and y,
x >y, such that x —y > n.
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Adjust Level of Formality to the Audience

Definition (Refinement)

A refinement of a set X is a family of sets P such that:
o ¢ P

© UnepA=X
o (VAABEP)A#B = AnB=1
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Adjust Level of Formality to the Audience

Definition (Refinement)

A refinement of a set X is a family of sets P such that:
o ¢ P

© UnepA=X
o (VAABEP)A#B = AnB=1

o Wat?!
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Adjust Level of Formality to the Audience

Definition (Refinement)

A refinement of a set X is a family of sets P such that:
o ¢ P

© UnepA=X
o (VAABEP)A#B = AnB=1

o Wat?!
@ | took this from Wikipedia!
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Adjust Level of Formality to the Audience

Definition (Refinement)

A refinement of a set X is a way of breaking apart the set X into
different pieces.
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... But Still Be Precise

Definition (Refinement)

A refinement of a set X is a way of breaking apart the set X into a
collection of nonempty sets, such that the sets don't overlap and
that all of the sets taken together make up all of X.
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Choose Language Appropriately to Match Intuition

Definition (Partition)

A partition of a set X is a way of breaking apart the set X into a
collection of nonempty sets, such that the sets don't overlap and
that all of the sets taken together make up all of X.
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An Example is Worth a Thousand Words

Definition (Partition)

A partition of a set X is a way of breaking apart the set X into a
collection of nonempty sets, such that the sets don't overlap and
that all of the sets taken together make up all of X.

@ The set {1,2,3,4,5,6,7} can be partitioned into the subsets

{1,2},{3,4,5},{6,7}.

@ This is also written as 12|345|67.
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A Picture is Worth a Thousand Words

Definition (Partition)

A partition of a set X is a way of breaking apart the set X into a
collection of nonempty sets, such that the sets don't overlap and
that all of the sets taken together make up all of X.

o O
oo
o
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Use Multiple Modes of Expression to Reach Wider
Audiences

Definition (Partition)

A partition of a set X is a way of breaking apart the set X into a
collection of nonempty sets, such that the sets don't overlap and
that all of the sets taken together make up all of X.

@ The set {1,2,3,4,5,6,7} can O O

be partitioned into the
subsets O O O
o

{1,2},{3,4,5},{6,7}.
o This is also written as / \ \

12|345|67. o0 OO0 0O
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We'll Use ShareLaTeX to Avoid Installation

@ https://www.sharelatex.com (Like Google Docs but for IATEX)
@ (Or your local IATEX installation)
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Style and Format are Flexible and Widely Varied

@ See example documents
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10 Minute Break

@ Go to the bathroom, eat a snack, text, (s)nap, chat, whatever

o (We'll have this every day)
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Slide Titles Should Concisely Drive the Point Home

o Typical audience not going to remember intricate details

@ Average number N of audience members that can write down
your formulas from memory after:

N=P:R®— B>n LY (ngn)
@ 46.53% of the numbers on this slide either made up or blend

into all other numbers
@ Here's another gratuitous formula (POTATOES):

n—1 . I
> dx’ - .

_ T A /x ] A .
X = il}) /_OO (27rhc3)2/5e or(x,)dlmje_%HJ(T 7)

@ Too many bullet points clutters visually and distracts from the
point

@ Seriously, use multiple slides instead of doing this. One idea
per slide!
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Keep Your Slides Clean

@ Too many bullet points clutters visually and distracts from the
point
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Slide Titles Should Concisely Drive the Point Home

@ Typical audience not going to remember intricate details
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Minimize Formula Use; Interpret the Ones You Have

@ Average number N of audience members that can write down
your formulas from memory after:

N =P :R®— B> Y (ngn®)

@ Not a large number!

Matthew DeCross Explorations in Mathematical Inquiry



Reveal Information Only as You Need It

@ Sometimes, it is necessary or useful to have a bit more
information in a slide
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Reveal Information Only as You Need It

@ Sometimes, it is necessary or useful to have a bit more
information in a slide

@ Don't have to present it all at once, though
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Reveal Information Only as You Need It

@ Sometimes, it is necessary or useful to have a bit more
information in a slide

@ Don't have to present it all at once, though

@ Wait so that audience is not distracted by all the info
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Reveal Information Only as You Need It

@ Sometimes, it is necessary or useful to have a bit more
information in a slide

@ Don't have to present it all at once, though
@ Wait so that audience is not distracted by all the info

@ Give them time to digest what you want them to point by
point
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Minimize Formula Use; Interpret the Ones You Have

@ Who can write down that second formula from five slides ago?
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Minimize Formula Use; Interpret the Ones You Have

@ Who can write down that second formula from five slides ago?

@ Who can remember what | said was important to remember
about it?
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Back to ShareLaTeX!

@ https://www.sharelatex.com

@ (Or your local IATEX installation)
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Style and Format are Flexible and Widely Varied

@ See example documents
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Interlude - Theorems and How to Prove Them

@ Time for board work / theorem-proof worksheet
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Presentation Details

See syllabus for suggested topics - pick one or find one, as a
group
Wed. and Thurs. for research, presenting Friday

°
@ 10-15 min including questions
@ Tell a complete story

°

Consult me for help!
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Contact Me Whenever You Want

@ Email: mdecross@sas.upenn.edu - most reliable
@ Office: DRL 2N3D - less reliable
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