PRIMES AND THE RIEMANN ZETA FUNCTION

MATT DECROSS

PRELIMINARY

Problem 1 (An Interesting Function).

Consider the following function (:
oo
1
(s) =) —-
n=1 n’
In lecture, we’ll show how this function is mysteriously related to prime
numbers. For now, though, we’ll look at another interesting feature:

2 2
(1) Evaluate ¢(2) and ((4) (Ans: %, §5)-
(2) Attempt to evaluate ((1). What happens? Explain. (Ans: ((1) is
divergent. This is the harmonic series.)

Problem 2 (Introduction to Product Notation).

Mathematicians often introduce more compact notation as a means of sim-
plifying a problem. When expressions get very complicated, sometimes
rewriting it in a better way can help you see the solution. In pre-calculus
and especially calculus, you've seen notation expressing a sum very com-
pactly. Here we introduce a similar notation for products which we’ll use
during our lesson:

k
H:L‘n = r1re...Tk.
n=1

Just as we can write infinite sums, we can also write infinite products as:

(o]

H T, = lim z129... 2.
k—oo

n=1

(1) Write p! in product notation, where p! denotes p factorial, the prod-
uct p(p—1)...1. (Ans: [[P_; n)

(2) Evaluate HZ:1 a1 (Ans: n%rl This is a telescoping product.)

n=1\2n—1 " 2n+1
product (called Wallis” product) is famous. (Ans: 7).

(3) Evaluate ]2 ( 2n_ . 2n ) The answer should tell you why this
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Mathematics is all about studying patterns and structures in numbers, and
finding ways to organize these patterns and structures so that they are
useful. One of the most fascinating types of numbers to study are the prime
numbers.

Definition (Prime Number).
A prime number is a positive integer greater than one that has no positive
divisors other than one and itself.

Example. The positive integer 7 is a prime number, since it has no other
positive divisors than itself and one. The positive integer 4, however, is not
a prime number, since 2 is a positive divisor of 4.

Why are these numbers so fascinating? Well, it turns out that we can
actually represent any integer as a product of only prime numbers! This
is the so-called fundamental theorem of arithmetic, proved by the Ancient
Greek mathematician Euclid:

Theorem (Fundamental Theorem of Arithmetic).

Every positive integer n greater than one can be represented as a unique
product of prime numbers, that is:

k
n= p?lng B 'pzék — sz%'
i=1
for primes p1 < pa < ... < pr and some set of positive integers {a;}.

Example. The positive integer 60 = 22-3-5. So 60 = H?:l py*, where
pr=2p2=3,p3=5,and a1 =2, ag = az = 1.

Problem 3 (Square Roots of Primes are Irrational).

Use the Fundamental Theorem of Arithmetic to prove that the square root
of any prime p is irrational. Hint: use a proof by contradiction. Suppose
the square root of p were rational and try to find an application of the
Fundamental Theorem of Arithmetic.

Answer:

Proof by Contradiction. Suppose for the sake of contradiction that ,/p is

rational for an arbitrary prime p. Then by definition we can write |/p = %
for some positive integers x and y. Squaring both sides and rearranging
yields py? = 2. The prime decompositions of 2% and y? must consist only
of primes with even exponents, because squaring doubles all exponents. But
then py? has a prime decomposition where the exponent of p is odd while
x? has a decomposition where the exponent of p is even, which contradicts
the uniqueness of the prime decomposition by the fundamental theorem of

arithmetic. Thus ,/p is irrational for any arbitrary prime p. O
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Euclid spent much of his life investigating the prime numbers, since they
had many interesting properties. In particular, he was able to show easily
that there are infinitely many prime numbers!

Theorem (Infinitude of the Primes).

There are infinitely many prime numbers.

Proof by Contradiction.

Suppose that there are only finitely many prime numbers. Then in particular
there is some largest prime number p. We will use p to show by construction
that a prime larger than p must exist, thus contradicting our assumption
and showing that indeed infinite primes exist, since for any given prime we
may always construct a larger prime.

If p is the largest prime number, let {p;} denote the set of primes up to and
including p. Then we may construct the following integer ¢:

q:1+le-:1+p1p2...p
7
Notably, ¢ > p. Since g has remainder one upon division by any of the primes
P1, P2, - - - D; q cannot be divisible by any of these primes. But then either ¢
is prime or the prime factors of ¢ are larger than p. In either case, we have
shown that there is a prime larger than p, thus contradicting our assumption
that p was the largest prime number. Therefore, there are infinitely many
prime numbers. O

Example. We demonstrate the method described above in the above proof
to show that we can always find a larger prime. Consider the prime number
p = 13. Then we construct g =1+2-3-5-7-11-13 =1+ 30030 = 30031.
But 30031 = 59 - 509, so we have found a new largest prime number, 509.

So we’ve established that there are infinitely many prime nubmers. But it
seems like there are less prime numbers as we start looking at larger and
larger integers. An interesting question, then, is the following: if there are
infinitely prime numbers, but they seem to be less close together as we look
at larger integers, is there a nice way we can characterize the distribution of
prime numbers? For instance, can we find a formula that tells us how many
prime numbers are less than some integer n? We can use what we’ve learned
in high school pre-calculus and calculus to try to answer this question.

So what does the distribution of prime numbers have to do with the concepts
we learn in high school pre-calculus and calculus, like complex numbers,
integrals, and infinite series? Quite a bit actually. It turns out that one of the
ways we can use calculus to learn interesting things about the distribution
of prime numbers is via an infinite series. In high school calculus, we call
this particular series the p-series, but in general mathematicians call it
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something different, after the famous 19th century German mathematician
Bernhard Riemann :

Definition (Riemann Zeta Function).

The Riemann Zeta Function ((s) is given by

oo

1
¢(s) = s

n=1
In particular, notice that (1) is the harmonic series that we have learned
about in calculus, which diverges. As we might remember, the p-series was
only convergent when the exponent was greater than one. This function is
a little more general than the p-series because s can be a complex number,
that is, we can write s = a + bi for some real numbers a and b. Later, we’ll
use the notation a = Re(s) and b = Im(s).

Theorem (Convergence of the p-series).

On the real line, the Riemann Zeta Function converges only when p > 1.

Proof.

When p > 1 we will show that the function converges by the integral test.
(Consider the fact that the rectangular approximation / Riemann sum that
underestimates the integral is equivalent to the sum. If the integral converges
then the sum which is “contained inside” the integral must as well):

/‘” 1 1 1|
—dr=——+
1 P 1 —par=],

which clearly converges for p > 1.

In all other cases, we require lim,, nip = 0, but this is not true and we
have divergence by the nth term test.

O

2

6’
4

((4) = Gy, as we have seen. In fact, ((s) evaluated at all the positive even

integers has something to do with powers of Pi! This is quite intriguing for

mathematicians, who find Pi to be a very beautiful number.

Other values of ((s) are also very interesting. For instance ((2) = and

So this function has something to do with Pi somehow, which is pretty cool.
But we claim that this function has something to do with the distribution of
prime numbers that we want to talk about, since primes are pretty cool too!
What does this function have anything to do with primes? Well, the famous
19th-century Swiss mathematician Fuler discovered a curious formula that
related the Riemann Zeta Function and prime numbers:
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Theorem (Euler’s Product Formula).

Proof.

Note that we’re taking the product over the limit of a geometric series, that
is,

1 o, 11
I = T (X0r) = T0 (e s i)
p prime pprime \k=1 p prime

Consider the expansion of this product,

<1—|—1+1 ><1—|—1+1 > <1+1+1 >
e ) (1) (1)

Performing this multiplication between every individual term, we obtain the
sum over every possible combination of products of the individual terms. So
when the dust clears,

1 1 1
11 1—p=s :Zp‘f”pg“...pa”s :Z( 1p5% . pn)®

p prime " Py P27 Pn

where the sum is over all possible sets of primes {pi,...p,} and sets of
integers {aq,...a,}. But by the fundamental theorem of arithmetic, each
integer is represented uniquely by such a product p'p5? ... p%", so we have

as claimed. O

Alternate Proof.

A famous algorithm called the Sieve of Eratosthenes is a method of finding
prime numbers less than some integer. This method works as follows:

(1) Write down a list of all integers up to the cutoff point.

(2) Start by writing down 2, because 2 is prime, and then crossing off
all multiples of 2.

(3) Proceeding to the next integer, 3, we see that 3 has not been crossed
off yet, so we write down 3 as prime and cross off all multiples of 3.

(4) Continue in the same manner, writing down a number as prime only
if it has not been crossed off, and then crossing off all of its multiples.
This will generate a list of all primes less than the cutoff.
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We employ that method in this proof. Recall that we can write the Riemann

Zeta Function as . ) )
) =1t gyt gt o
Suppose we add a factor of 2° to the denominator of every term, that is:

1 1 1 1
—C( )=t ptate T
Then if we subtract this new series from the first, we will have sieved out
all multiples of = 55 in the series. So we can write:

1 1 1
Now, inspired by the Sieve of Eratosthenes, we iterate the same procedure
to remove all multiples of - from this new series, and obtain:

-1 1—i C(s) =1 5+ o + 735 +
3s 28 N s 118 T

It seems that we are sieving out all of the primes! Repeating this algorithm
ad infinitum yields:

(-18) (%) (%) (-5) (-5) €0

Dividing both sides by the factors on the left hand side, we see that:

o= [ —

1—ps
p prime p

as claimed O

This relationship is more than just a new formula—it actually tells us very
useful information about prime numbers! For instance, we can prove Euclid’s
claim about the infinitude of the primes in much less space:

Problem 4 (Infinitude of the Primes). Use Euler’s product formula to
establish the infinitude of the primes. Hint: use a proof by contradiction
again! Consider evaluating ((s) at a specific value of s.

Answer: see the below theorem.

Theorem (Infinitude of the Primes).

There are infinitely many prime numbers.

Proof by Contradiction.

Suppose there are only finitely many prime numbers. Then:

¢ = ]I %

p prime p



PRIMES AND THE RIEMANN ZETA FUNCTION 7

takes some finite value. But we know ((1) is just the harmonic series, which
diverges. This is a contradiction, so there must be infinitely many prime
numbers. (Note that this isn’t really a proof because we tacitly assumed
that there were infinitely many prime numbers in proving Euler’s product
formula when we used the geometric series formula / sieved out infinite
terms, so really we are just recovering an initial assumption. But it’s still a
cute way to verify the result). O

Great, so we miraculously found a function that can tell us some useful
things about prime numbers. But we’re still not quite satisfied—we already
knew there were infinitely many primes. Can we use this function to tell us
more about the distribution of prime numbers, like we wanted? The answer
is yes, but we need a more useful form of the function first.

If we recall the original series definition of the Riemann Zeta Function, it
was a p-series, which only converges when the exponent is greater than one.
We can write ((s) in a different way, though—in the early twentieth century,
mathematicians found a way to rewrite the function so that it agreed with
the infinite series when Re(s) > 1, but also gave useful values for Re(s) < 1.
We need a new function to rewrite the Riemann Zeta Function like this,
however. This new function is called the Gamma Function, which has a
fancy integral definition that we don’t need to worry about too much. The
important part is that the Gamma Function is the same as the factorial, for
the integers:

Definition (Gamma Function).

The Gamma Function I'(s) is given by
oo
I'(s) :/ ¥ 'e™dr, Re(s) >0
0
I'(s) =(s—1)!, Re(s) >1 and Im(s)=0.
Using the Gamma Function, it’s possible (but nontrivial) to prove that the

following relation holds:

Theorem (Functional Equation for the Riemann Zeta Function).

C(s) = 2(2m)*Lsin(rs/2)L(1 — s)C(1 —s), Re(s) <1

This should be startling. The Riemann Zeta Function is defined as an infinite
series which we have proved that (at least for real values) does not converge
to the left of s = 1. Yet we’ve somehow found a way of expressing values of
the function to the left regardless, which do not blow up. What’s going on?

We obtained the above functional relation by playing with some integrals
that were equal to the Riemann Zeta Function times the Gamma Func-
tion. The integrals we were playing with were actually convergent almost
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everywhere, but agreed with the the product of the RZF and the Gamma
function on Re(s) > 1. This is an example of the concept from complex
analysis known as analytic continuation; finding different representations of
functions that agree on some overlapping set. These help to generalize any
particular function by giving finite values for one form of a function in a
region where another form might diverge to infinity.

Example. We compute ((—1):

C(—1) = 2(27) 2 sin(—7/2)T(2)¢(2) = 47r2 (7;) %21
-1

Notably, we can analogize ((—1) = 142434 ... = 7. Though this is
not the same as saying the divergent series 1 + 2 + 3+ ... converges to a
finite value, certain formulas in physics that include the series 14+2+3+...
are measured experimentally to have finite values agreeing with the result
1—21 It’s important to realize that we are not saying the series converges!
Rather, the analytic continuation of the zeta function takes a finite value at
—1, while the zeta function itself does not. It just happens that experiment
motivates using the value instead of co in the expression with 1+2+3+...
in certain physics formulae, which is and should be an uncomfortable fact.

We want to use our new functional equation to tell us something useful
about the distribution of primes. To do this, we take advantage of the life’s
work of many mathematicians of the twentieth century, who figured out that
the zeros of ((s) had something to do with the distribution of primes. Some
of these zeros are easier to find than others:

Remark. From the functional equation for the Riemann Zeta Function,
it’s clear that the only zeros on the real line (when Im(s) = 0) occur when
sin(ms/2) = 0. This is true when s = 0, —2, —4, ... These zeros are referred
to as the trivial zeros of the Riemann Zeta Function, in part because they
are very easy to find, but also because they do not encode any information
about primes. Any other zeros are referred to as the nontrivial zeros of the
zeta function.

Proposition (Riemann Hypothesis). All nontrivial zeros of ((s) lie on the

line in the complex plane with Re(s) = 3.

This hypothesis is one of the most famous and most important unanswered
questions of the twentieth and twenty-first century in mathematics (its so-
lution is worth $1M from the Clay Mathematics Institute). Why is this so?
Well, it turns out that if this hypothesis is true it tells us something very
powerful about the distribution of primes.

In particular, we use the work of the famous late-18th century mathemati-
cian Carl Friedrich Gauss, who found that we could approximate the number
of primes less than some integer by the following function:
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Definition (Logarithmic Integral).

The Logarithmaic Integral, given by
©dt
2 h’lt

estimates the number of primes less than some integer x.

Li(z) =

Example.
Li(20) = 8.86014 ~ 9 w(20) =7
Li(48) = 16.9096 ~ 17 m(48) = 14

The Riemann Zeta Function is important because it tells us how good an
estimate Li(x) is for the number of primes less than x. Specifically, we would
have the following:

Proposition (The Riemann Hypothesis and Distribution of Primes).

If the Riemann Hypothesis is true, then Li(x) gives the number of primes
less than some integer x to within \/xInx.

The end result of our efforts: we’ve shown that there is a function repre-
sented as an infinite series over the complex numbers whose zeros give us
information about the distribution of prime numbers!

Addendum: Below I have a precise statement of the theorem I quoted at
the end of class:

Theorem. There exists an entire (everywhere analytic/complex differen-
tiable) function with arbitrarily prescribed zeros a,, provided that, in the case
of infinitely many zeros, a, — oco. Ewvery entire function with these and no
other zeros can be written in the form:

oo 9 i
— ymgh(z) L2 et (&) o ()
f(z) =2"e H < o e
n=1
where the product is taken over all a,, # 0, the m,, and m are certain integers,

and h(z) is an entire function.

This was close to my statement from memory, but not quite; there are a few
fixes: First, I wrote g(z) in front of the product and claimed that g(z) had
no zeros. This is the same as ¢"(®); the exponential has no zeros. Second,
note that the expression in parentheses in slightly different than how I wrote
it, but the important part is that it is zero whenever z = a, for any zero
ap that is nonzero. (Third), the polynomial z™ out in front that I forgot
just takes care of the fact that f(z) could have a zero at 0; the m is the
multiplicity of this zero (double/triple/etc root). Finally, I wrote P(z) as
some arbitrary polynomial in z; from the above theorem however we see
that the condition is slightly more constrained.
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Example.

oo 2
. zZ z/n z
S11n = —_ — = —_ —
mZ 772”(1 n)e 7rz||(1 n2>
n#0 n=1
Note that in the second expression we have combined all the terms n with

those at —n, killing the exponential and making each term a difference of
perfect squares.

The sin function as above is defined as zeros at all of the integers. This
motivates the construction of the gamma function. By rearranging the above
formulas slightly we can find a function with zeros only at the negative
integers. Playing with the properties of this new function, it’s possible (but
annoying, so I won’t write it here. See Ahlfors’ Complex Analysis p. 198-199
if interested.) to construct some function that satisfies f(z+1) = zf(z). But
this is the fundamental definition of the gamma function: I'(z 4+ 1) = 2T'(2)
is the factorial.

We obtain this nice functional definition from playing with the product
expansions. The product expansion that we obtain for the Gamma function
is the following;:

Example.
6772 0 z —1
I'(z) = (1 7) 2/n
(2) = — g +-) e

where v = 57722 is FEuler’s constant, v = lim,,_ (1 + % + % +...+ % — log n)

From this definition we obtain the fact that the gamma function as the
function that blows up at z = 0,—1,—2,... but has no zeros, and this
equally suffices. Comparing to the previous example, it is possible (but
nonobvious) to see that:

Corollary.
T

M) -=2) =

sinmz

I have not proven any of the material presented in this addendum; several of
the examples stated have proofs that are theoretically straightforward but
involve quite a few lines of tedious computation. The point of this addendum
is not necessarily that you follow every statement line-by-line, but rather to
motivate why we might care about the theorem I quoted at the end of class.



